Phương trình lượng giác có điều kiện. Cách giao điều kiện của phương trình lượng giác.
Phương trình lượng giác có điều kiện. Những phương trình lượng giác có chứa hàm $\tan x$, $\cot x$, có ẩn ở mẫu, có ẩn trong căn,... thì ta cần đặt điều kiện. Và khi giải xong ta biểu diễn điều kiện và nghiệm để loại nghiệm.
Ví dụ. Giải phương trình $\frac{{\cos x - \sin 2x}}{{2{{\cos }^2}x - \sin x - 1}} = \sqrt 3 {\rm{ }}\left( 1 \right)$.
Giải. Điều kiện $2{\cos ^2}x - \sin x - 1 \ne 0 \Leftrightarrow 2{\sin ^2}x + \sin x - 1 \ne 0$
Bây giờ biễu diển nghiệm và điều kiện lên cùng một đường tròn lượng giác, xem lại cách biễu diễn ở đây.
Điều kiện được biễu diễn bởi dấu $ \times $,
Nghiệm của phương trình được biễu diễn bởi dấu $\bullet$,những điểm bị trùng với dấu $ \times $ sẽ bị loại.
Như vậy có điểm bị loại bỏ, cuối cùng nghiệm của phương trình là họ góc lượng giác được biểu diễn bởi điểm $M$, đó là $$x = - \frac{\pi }{6} + k2\pi .$$
Góp ý hoặc một bài toán của Quý học viên hoặc Quý Phụ Huynh