Khoảng cách giữa hai đường thẳng chéo nhau
- Thứ bảy - 06/02/2016 16:32
- In ra
- Đóng cửa sổ này
Công thức tính khoảng cách giữa hai đường thẳng chéo nhau. Bài toán tính khoảng cách giữa hai đường đẳng chéo nhau.

Đường thẳng $d_1$ có vector chỉ phương là ${\vec u_1}$, đi qua điểm $M_1$;
Đường thẳng $d_2$ có vector chỉ phương là ${\vec u_2}$, đi qua điểm $M_2$.
Khoảng cách giữa $d_1$ và $d_2$, ký hiệu $d\left( {{d_1},{d_2}} \right)$, được tính theo công thức $$d\left( {{d_1},{d_2}} \right) = \frac{{\left| {\overrightarrow {{M_1}{M_2}} \cdot \left[ {{{\vec u}_1},{{\vec u}_2}} \right]} \right|}}{{\left| {\left[ {{{\vec u}_1},{{\vec u}_2}} \right]} \right|}}.$$
Cách khác: Bước 1. Viết phương trình mặt phẳng $\left( P \right)$ chứa $d_1$ và song song với $d_2$. Cặp vector chỉ phương của $\left( P \right)$ là ${{\vec u}_1},{{\vec u}_2}$. Suy ra ${\vec n_P} = \left[ {{{\vec u}_{{d_1}}},{{\vec u}_{{d_2}}}} \right].$
Bước 2. $d\left( {{d_1},{d_2}} \right) = d\left( {{d_2},\left( P \right)} \right) = d\left( {{M_2},\left( P \right)} \right).$
Ví dụ. Tính khoảng cách giữa hai đường thẳng $\left( {{d_1}} \right):\left\{ \begin{array}{l}
x = t\\
y = 5 - 2t\\
z = 14 - 3t
\end{array} \right.$ và $\left( {{d_2}} \right):\left\{ \begin{array}{l}
x = 9 - 4\lambda \\
y = 3 + \lambda \\
z = - 1 + 5\lambda
\end{array} \right..$
Giải. Ta có ${\vec u_1} = \left( {1; - 2; - 3} \right),\;\;{\vec u_1} = \left( { - 4;1;5} \right) \Rightarrow \left[ {{{\vec u}_1},{{\vec u}_2}} \right] = \left( { - 7;7; - 7} \right) \Rightarrow \left| {\left[ {{{\vec u}_1},{{\vec u}_2}} \right]} \right| = \sqrt {{{\left( { - 7} \right)}^2} + {7^2} + {{\left( { - 7} \right)}^2}} = 7\sqrt 3 .$
Ta cũng có ${M_1}\left( {0;5;14} \right) \in {d_1},{M_2}\left( {9;3; - 1} \right) \in {d_2} \Rightarrow \overrightarrow {{M_1}{M_2}} = \left( {9; - 2; - 15} \right).$
Suy ra $\overrightarrow {{M_1}{M_2}} \cdot \left[ {{{\vec u}_1},{{\vec u}_2}} \right] = - 7 \cdot 9 + 7 \cdot \left( { - 2} \right) - 7 \cdot \left( { - 15} \right) = 28.$
Như vậy $d\left( {{d_1},{d_2}} \right) = \frac{{\left| {\overrightarrow {{M_1}{M_2}} \cdot \left[ {{{\vec u}_1},{{\vec u}_2}} \right]} \right|}}{{\left| {\left[ {{{\vec u}_1},{{\vec u}_2}} \right]} \right|}} = \frac{{28}}{{7\sqrt 3 }} = \frac{4}{{\sqrt 3 }}.$
Ta cũng có ${M_1}\left( {0;5;14} \right) \in {d_1},{M_2}\left( {9;3; - 1} \right) \in {d_2} \Rightarrow \overrightarrow {{M_1}{M_2}} = \left( {9; - 2; - 15} \right).$
Suy ra $\overrightarrow {{M_1}{M_2}} \cdot \left[ {{{\vec u}_1},{{\vec u}_2}} \right] = - 7 \cdot 9 + 7 \cdot \left( { - 2} \right) - 7 \cdot \left( { - 15} \right) = 28.$
Như vậy $d\left( {{d_1},{d_2}} \right) = \frac{{\left| {\overrightarrow {{M_1}{M_2}} \cdot \left[ {{{\vec u}_1},{{\vec u}_2}} \right]} \right|}}{{\left| {\left[ {{{\vec u}_1},{{\vec u}_2}} \right]} \right|}} = \frac{{28}}{{7\sqrt 3 }} = \frac{4}{{\sqrt 3 }}.$
Cách khác. Ta có ${\vec n_P} = \left[ {{{\vec u}_{{d_1}}},{{\vec u}_{{d_2}}}} \right] = \left( { - 7;7; - 7} \right) = - 7\left( {1; - 1;1} \right)$ và $M\left( {0;5;14} \right) \in {d_1} \subset \left( P \right).$ Suy ra $$\left( P \right):1 \cdot \left( {x - 0} \right) - 1 \cdot \left( {y - 5} \right) + 1 \cdot \left( {z - 14} \right) = 0 \Leftrightarrow x - y + z - 9 = 0.$$ Như vây $$d\left( {{d_1},{d_2}} \right) = d\left( {{M_2},\left( P \right)} \right) = \frac{{\left| {9 - 3 - 1 - 9} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{4}{{\sqrt 3 }}.$$